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The instability of liquid surfaces when accelerated in a
direction perpendicular to their planes. I

By Sir GEOFFREY TAYLOR, F.R.S.

(Received 3 December 1949)

It is shown that, when two superposed fluids of different densities are accelerated in a
direction perpendicular to their interface, this surface is stable or unstable according to
whether the acceleration is directed from the heavier to the lighter fluid or vice versa. The
relationship between the rate of development of the instability and the length of wave-like
disturbances, the acceleration and the densities is found, and similar calculations are made
for the case when a sheet of liquid of uniform depth is accelerated.

1. INTRODUCTION

If the horizontal surface of a liquid at rest under gravity is displaced into the form
of regular small corrugations and then released, standing oscillatory waves are pro-
duced. Theoretically, a liquid could exist in a state of unstable equilibrium with flat
lower horizontal surface supported by air pressure. If small wave-like corrugations
were formed on this lower surface and then released, they might be expected to
increase exponentially so long as their height was small compared with the wave-
length.

This instability of the lower surface of a liquid might be expected to disappear if
the liquid were allowed to fall freely, and to pass over into stability if the liquid were
forced downwards with an acceleration greater than that of gravity. Similarly, the
initial stability of the upper surface of a liquid might be expected to pass over into
instability if the liquid were given a downward acceleration greater than that of
gravity.

2. THE INSTABILITY OF AN INTERFACE BETWEEN TWO FLUIDS

Consider the interface between two fluids of densities p, and p,. Assuming that
they are accelerated vertically upwards with acceleration ¢,, take horizontal and
vertical axes which are fixed relative to the interface. The equations of motion
relative to the accelerating axes are identical with those of a fluid at rest except that
a term —g,p,y must be added to the pressure in the upper fluid and a term —g,p.y
to that in the lower fluid. If both fluids are deep compared with the wave-length of
the disturbance of the interface, the velocity potentials of the motion are

¢, = Ae~Kvinicos Kz in the upper fluid, (1)
g = — AeK¥+ntcos Kx  in the lower fluid. (2)
The equation of the surface of separation is then
7 = AKn le™cos K. (3)
The pressure in the upper fluid, neglecting squares of disturbance velocity, is
Pr=P—@+9) Py +p1- b1,

where p is the mean pressure at the interface and g is the acceleration of gravity.
[ 192 ]
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Similarly, the pressure in the lower fluid is

Do =D—(9+91) Py + P Po-
At the interface, therefore

—(9+91) (pa—p1) Y = (py+ps) nAe™ cos K. (4)
Hence from equation (3)
. ne = _K(g+g1) (Pz“Pl). (5)
(p2+p1)

If (9+g,) is negative, the acceleration downwards is greater than g and n? is
positive. In this case the velocity potentials are of the form

¢, = (Ae™Ev 4. Be——Ev) cos Kz, (6)
¢y = — (Ae™+Ey  Be~m+EY) cos K, (7)

where » is taken to be the positive value of
(P2 —pl))
—-K(g+g,)——=].
«/ ( O+ 00 (0, % p0)
If the initial displacement of the interface from the plane y = 0 is

Mo = C cos Kz,
and the initial velocity is zero, equations (3), (6) and (7) become
7 = C coshni cos Kz, (8)
1= %g—’e“K” sinh nt cos Kz, (9)
Gy = —%eKysinhntcost. (10)

The initial disturbance of the interface will increase exponentially with n¢ until
it has attained a magnitude which is no longer small in comparison with the wave-
(P2—p1)

length. The rate of development of the instability is proportional to J (s pr)”
2+ P

3. THE INSTABILITY OF A LIQUID SHEET OF FINITE THICKNESS %
ACCELERATED BY AIR PRESSURE

In this case it will be assumed that the liquid sheet is of uniform thickness and is
accelerated by air pressure acting on its upper surface. If the density of the liquid
is great compared with that of air, the pressure may be assumed uniform over both

the upper and lower surfaces.
Assuming in the first place that the elevations of the disturbances above their

mean levels are of the form

My = ae™cos Kz  at the upper surface “(11)
13-2
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and N = fe*cos Kz at the lower surface, (12)

these are consistent with a velocity potential

¢ = (4eXV 4 Be—EKv) e cos Kz, (13)
provided that —a—gtg = —g—z aty =0,
o o
and ot =3y aty =—h,
so that an = —K(A - B), (14)
and pn = — K(Ae K" + BeKh), (15)

The pressure in the fluid (neglecting squares of disturbance velocity) is

P =P—pylg+9,)+pd,

where P is the pressure at the upper surface. The condition that p is constant at

Y =y is a(g+g,) = n(A+B), (16)
while the condition at y = 5 is
B(g+91) = n(Ae~ %" + BeXh), (17)

The four equations (14), (15), (16) and (17) can only be satisfied simultaneously if
either A = 0 or B = 0.

Tf B = 0, then a=pekr on=—-KA and a(g+g,) =nd,

so that n? = —K(g+g,)- (18)
If 4 =0, then o=pe B on=KB and a(g+g,) =nB,

so that in this case n? = K(g+9¢,). (19)

By combining together solutions of these two types, the initial conditions at the
top and bottom surfaces can be satisfied. As an example, take the case when the
liquid is initially at rest but with the upper and lower surfaces corrugated into
waves of amplitudes &, and f, respectively. Supposing that the liquid is accelerated
downwards by applying a pressure at the upper surface, (g+g¢,) is then negative
and the appropriate form for the velocity potential is

¢ = (AeX¥sinh ni+ Be XY sin nt) cos Kz, (20)

where 7 is the positive value of \{— K(g+¢;)}-
The elevation of the upper and lower surfaces are

Ny = %(—A cosh nt — B cos nt) cos Kz, (21)

and Ny = K (Ae~E* cosh nt — BeK™ cos nt) cos K. (22)

3

When ¢ = 0, Ny = agcos Kz and 7, = f,cos Kz.
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Therefore A+B=— aco%, (23)
and AeEh 4 BeKh = — /30%. (24)

Solving for A and B and substituting in equations (21) and (22), the elevations
of the upper and lower surfaces become

cos Kz
Ny = {(atg— foe™E") cosh nt — (aye 2K — fe~K") cos nt} o (25)
- —Kh ~2KhY gosh —Kh cos Kz 9
Nz = {(0tge™E" — foe ) cosh nt — (e,e~%" — ;) cos nt} T (26)

In the experimental work described by Mr D. J. Lewis in part II (1950), various
liquids were accelerated with an initial disturbance on the upper surface and with the
lower surface initially flat. This corresponds to the case of f#, = 0, when equations
(25) and (26) reduce to

cosh nt — e—2K% cog nt

Ny = 0‘0{ | oiKh } cos Kz, (27)
cosh nt — cosnt '

17L = do{mh-—“} e_Kh COoS Kx (28)

The effect of the lower surface on the upper is represented by the terms in equation
(27) containing e~2K% as a factor. If A is greater than A, where A is the wave-length,
e~2Kh jg less than 0-015. Neglecting the terms containing e~25K%, equation (27)
becomes Ny = aycoshnt cos Kz, (29)
which is the form appropriate to a liquid of infinite depth.

In the experiments described in part IT this approximation seems to be justifiable.

4. CONCLUSIONS

Defining the amplification factor of an unstable fluid surface as the ratio of the
amplitude of the disturbance at any time to its initial value, we have for a vertical
downward acceleration g,

U] (Pa=pi)|
" coshnt cosh{ K(g,—9) (P +p1)} 12 (30)

This applies to an initially disturbed interface between two fluids and also approxi-
mates closely to the behaviour of the upper surface of a sheet of liquid of density p,
of thickness # > $A when accelerated by air pressure, in which case p; may be neglected
by comparison with p,. The acceleration is taken to begin at time ¢ = 0, and at time ¢
the liquid has moved downwards a distance s given by

s = 39,13,
7 478 (91— 9) (P2 —p1)
so that L= coshA/{MM—~— . 31
7o A g (petpy) (31)
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If g, is large compared with g,
n_ hA/{@ (Pz_P1)} _ hA/{‘l (p2— Pl)}
o 08 A (pa+p1) oo o (P2 +p4) (32

where m is the number of wave-lengths that the liquid has descended. Thus, when
¢,>¢, the amplification of an unstable disturbance depends only on the ratio of
the densities of the two fluids and the number of wave-lengths through which they
have descended.

The experiments described in part IT were designed to test the above theoretical
conclusions and to find out how the unstable surface behaves when the amplitude
of the disturbance becomes so great that the analysis based on the assumption that
it is small ceases to be applicable.
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This part reconsiders the previously neglected non-orthogonality of atomic orbitals. New
generalized definitions of fractional bond order and charge distribution are introduced, and
it is shown that under certain conditions, which are satisfied by most conjugated hydro-
carbons, the overlap factor is completely irrelevant in calculating bond orders and charges.
For heteromolecules this is not the case, and substantial changes may sometimes be made
by its inclusion. The various polarizability coefficients introduced in earlier papers are
always affected, but numerical results suggest that these changes are not very large.

INTRODUCTION

Previous papers in this series (Coulson & Longuet-Higgins 1947-8, referred to as
I to V) have discussed in quite general terms the bond orders and charge distribution
in conjugated systems; and have introduced various polarizability coefficients whose
values showed how a molecule was likely to be affected by a change in the environ-
ment of any part of it. Applications were made to the law of alternating polarity in
chemical reactions, to the vibrations of condensed molecules such as benzene and
naphthalene, to the conjugating power of unsaturated free radicals, and to the
differences between hydrocarbon systems such as naphthalene and heterosystems
such as quinoline, in which a CH group has been replaced by a N atom. But in all this

work it was explicitly supposed that all overlap integrals S,, = fqﬁ «®,d7 between

distinet atomic orbitals ¢, and ¢, were identically zero. Such an approximation has
almost universally been made hitherto, despite the fact that numerical calculations
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